Microstructural evolution of cold-rolled Cu-5%Zn alloy during in situ heating inside field-emission scanning electron microscope was utilized to obtain user-independent parameters in order to trace the progress of static recovery and recrystallization. Electron back-scattered diffraction (EBSD)-based orientation imaging microscopy was used to obtain micrographs at various stages of in situ heating. It is shown that unlike the pre-existing methods, additional EBSD-based parameter can be used to trace the progress of recovery and recrystallization, which is not dependent on user input and hence less prone to error. True strain of 0.3 was imposed during cold rolling of alloy sample. Rolled sample was subjected to in situ heating from room temperature to 500°C (∼0.58 Tm) with soaking time of 10 min, at each of the intermediate temperatures viz. 100, 200, 300, 400 and 450°C. After reaching 500°C, the sample was kept at this temperature for a maximum duration of around 15 h. The sample showed clear signs of recovery for temperature up to 450°C, and at 500°C, recrystallization started to take place. Recrystallization kinetics was moderate, and full recrystallization was achieved in approximately 120 min. We found that EBSD parameter, namely, band contrast intensity can be used as an extra handle to map out the progress of recrystallization occurring in the sample. By contrast, mean angular deviation can be used to understand the evolution of recovery in samples. The parameters mentioned in the current study, unlike other pre-existing methods, can also be used for mapping local microstructural transformations due to recovery and recrystallization. We discuss the benefits and limitations in using these additional handles in understanding the changes taking place in the material during in situ heating.