Millimeter-wave (mmWave) networking represents a core technology to meet the demanding bandwidth requirements of emerging connected vehicles. However, the feasibility of mmWave vehicleto-everything (V2X) connectivity has long been questioned. One major doubt lies in how the highly directional mmWave links can sustain under high mobility. In this paper, we present the first comprehensive reality check of mmWave V2X networks. We deploy an experimental testbed to mimic a typical mmWave V2X scenario, and customize a COTS mmWave radio to enable microscopic investigation of the channel and the link. We further construct a high-fidelity 3D ray-tracer to reproduce the mmWave characteristics at scale. With this toolset, we study the mmWave V2X coverage, mobility and blockage, codebook/beam management, and spatial multiplexing. Our measurement debunks some common misperceptions of mmWave V2X networks. In particular, due to the constrained roadway network structures, we find the beam management can be handled easily by the often-denounced beam scanning schemes, as long as the codebook is properly designed. Blockage can be almost eliminated through proper basestation deployment and cooperation. Highly effective spatial multiplexing can be realized even without sophisticated MIMO radios. Our work points to possible ways to realize efficient and reliable mmWave networks under high mobility, while maintaining the simplicity of standard network protocols.