2014 American Control Conference 2014
DOI: 10.1109/acc.2014.6859326
|View full text |Cite
|
Sign up to set email alerts
|

Adaptive control of uncertain systems with gain scheduled reference models and constrained control inputs

Abstract: This paper develops a new state feedback model reference adaptive control approach for uncertain systems with gain scheduled reference models in a multi-input multioutput (MIMO) setting with constrained control inputs. A single Lyapunov matrix is computed for multiple linearizations of the nonlinear closed-loop gain scheduled reference system, using convex optimization tools. This approach guarantees stability of the closed-loop gain scheduled reference model. Adaptive state feedback control architecture is th… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
4
0

Year Published

2016
2016
2020
2020

Publication Types

Select...
4
1

Relationship

0
5

Authors

Journals

citations
Cited by 6 publications
(4 citation statements)
references
References 15 publications
0
4
0
Order By: Relevance
“…where KxinormalTfalse(ρ,thinmathspacetfalse)=false[kxi1false(ρ,thinmathspacetfalse),thinmathspacekxi2false(ρ,thinmathspacetfalse),thinmathspace,thinmathspacekxinfalse(ρ,thinmathspacetfalse)false]Rm×n and Krifalse(ρ,thinmathspacetfalse)=false[kri1false(ρ,thinmathspacetfalse),kri2false(ρ,thinmathspacetfalse),thinmathspace,thinmathspacekrimfalse(ρ,thinmathspacetfalse)false]Rm×m are the estimates of KxiTfalse(ρfalse),thinmathspaceKrifalse(ρfalse), respectively. Remark 3 When ρfalse(tfalse)=t, that is ufalse(tfalse)=KxσnormalTfalse(tfalse)xfalse(tfalse)+Krσfalse(tfalse)rfalse(tfalse), then the controller (13) degenerates into the controller in [21]. …”
Section: Resultsmentioning
confidence: 99%
See 2 more Smart Citations
“…where KxinormalTfalse(ρ,thinmathspacetfalse)=false[kxi1false(ρ,thinmathspacetfalse),thinmathspacekxi2false(ρ,thinmathspacetfalse),thinmathspace,thinmathspacekxinfalse(ρ,thinmathspacetfalse)false]Rm×n and Krifalse(ρ,thinmathspacetfalse)=false[kri1false(ρ,thinmathspacetfalse),kri2false(ρ,thinmathspacetfalse),thinmathspace,thinmathspacekrimfalse(ρ,thinmathspacetfalse)false]Rm×m are the estimates of KxiTfalse(ρfalse),thinmathspaceKrifalse(ρfalse), respectively. Remark 3 When ρfalse(tfalse)=t, that is ufalse(tfalse)=KxσnormalTfalse(tfalse)xfalse(tfalse)+Krσfalse(tfalse)rfalse(tfalse), then the controller (13) degenerates into the controller in [21]. …”
Section: Resultsmentioning
confidence: 99%
“…In addition, Assumptions 1 and 3 are standard assumptions and have been widely used when the system matrices are scheduling parameter‐independent [24]. Remark 2 Assumption 2 presents a mild boundedness condition on the related parameters, which has been used in [21]. Definition 1 [10] A switching signal has an average dwell time τ a if there exist two positive numbers N 0 and τ a such that Nσfalse(T,thinmathspacetfalse)N0+false(Ttfalse)/τa,1emTt0, where Nσfalse(T,thinmathspacetfalse) is the number of switchings occurring in the interval [ t , T ) and N 0 is the chatter bounds. Definition 2 [22] The system (2) is said to be bounded input–bounded state stable if there exist positive constants η 0 and η 1 such that for any continuous bounded input rfalse(tfalse) falsefalse|falsefalse|xmfalse(tfalse)falsefalse|falsefalse|η1thinmathspacesuptt0thickmathspacerfalse(tfalse)+η0falsefalse|falsefalse|xmfalse(t0false)falsefalse|falsefalse|,thinmathspacett0.…”
Section: Problem Statement and Preliminariesmentioning
confidence: 99%
See 1 more Smart Citation
“…Generally, this phenomenon is described and controlled utilising methods to achieve more accurate results. An adaptive control leads to higher efficiency and performance compared to conventional control [46][47][48][49].…”
Section: Astesj Issn: 2415-6698mentioning
confidence: 99%