Determination of optimum cutting parameters is one of the most essential tasks in process planning of metal parts. However, to achieve the optimal machining performance, the cutting parameters have to be regulated in real time. Therefore, utilizing an intelligent-based control system, which can adjust the machining parameters in accordance with optimal criteria, is inevitable. This article presents an intelligent adaptive control with optimization methodology to optimize material removal rate and machining cost subjected to surface quality constraint in finish turning of hardened AISI D2 considering the real condition of the cutting tool. Wavelet packet transform of cutting tool vibration signals is applied to estimate tool wear. Artificial intelligence techniques (artificial neural networks, genetic programming and particle swarm optimization) are used for modeling of surface roughness and tool wear and optimization of machining process during hard turning. Confirmatory experiments indicated that the efficiency of the proposed adaptive control with optimization methodology is 25.6% higher compared to the traditional computer numerical control turning systems.