In order to understand the near-cloud aerosol properties and their impact on radiative forcing, we utilized in situ aircraft measurements of aerosol particles and cloud droplets during the Cloud Aerosol Interaction and Precipitation Enhancement Experiment carried out over the Indian subcontinent in the monsoon season. From the measurement of aerosol size distribution of diameter range from 0.1 to 50 μm, we reported that aerosol concentrations could be enhanced by 81% and the effective diameter (d eff , μm) by a factor of 2 near the cloud edges when compared with regions far from the cloud. These enhanced aerosol concentrations are a function of the relative humidity (RH) in the cloud-free zone, attributed to mixing and entrainment processes in the cloud edges. It is also found that for warm clouds, RH increases exponentially in the near-cloud regions. In addition, d eff was increased linearly with RH. Through model simulations, we found that aerosol optical depth decreases with distance from the cloud edge. Further, aerosols in cloud edges were found to increase the reflected flux by 20% compared to cloud-free regions, thus brightening the near-cloud areas.