Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
In the field of biomedical engineering, the issue of drug delivery constitutes a multifaceted and demanding endeavor for healthcare professionals. The intravenous administration of pharmacological agents to patients and the normalization of average arterial blood pressure (AABP) to desired thresholds represents a prevalent approach employed within clinical settings. The automated closed-loop infusion of vasoactive drugs for the purpose of modulating blood pressure (BP) in patients suffering from acute hypertension has been the focus of rigorous investigation in recent years. In previous works where model-based and fuzzy controllers are used to control AABP, model-based controllers rely on the precise mathematical model, while fuzzy controllers entail complexity due to rule sets. To overcome these challenges, this paper presents an adaptive closed-loop drug delivery system to control AABP by adjusting the infusion rate, as well as a communication time delay (CTD) for analyzing the wireless connectivity and interruption in transferring feedback data as a new insight. Firstly, a nonlinear backstepping controller (NBC) is developed to control AABP by continuously adjusting vasoactive drugs using real-time feedback. Secondly, a model-free deep reinforcement learning (MF-DRL) algorithm is integrated into the NBC to adjust dynamically the coefficients of the controller. Besides the various analyses such as normal condition (without CTD strategy), stability, and hybrid noise, a CTD analysis is implemented to illustrate the functionality of the system in a wireless manner and interruption in real-time feedback data.
In the field of biomedical engineering, the issue of drug delivery constitutes a multifaceted and demanding endeavor for healthcare professionals. The intravenous administration of pharmacological agents to patients and the normalization of average arterial blood pressure (AABP) to desired thresholds represents a prevalent approach employed within clinical settings. The automated closed-loop infusion of vasoactive drugs for the purpose of modulating blood pressure (BP) in patients suffering from acute hypertension has been the focus of rigorous investigation in recent years. In previous works where model-based and fuzzy controllers are used to control AABP, model-based controllers rely on the precise mathematical model, while fuzzy controllers entail complexity due to rule sets. To overcome these challenges, this paper presents an adaptive closed-loop drug delivery system to control AABP by adjusting the infusion rate, as well as a communication time delay (CTD) for analyzing the wireless connectivity and interruption in transferring feedback data as a new insight. Firstly, a nonlinear backstepping controller (NBC) is developed to control AABP by continuously adjusting vasoactive drugs using real-time feedback. Secondly, a model-free deep reinforcement learning (MF-DRL) algorithm is integrated into the NBC to adjust dynamically the coefficients of the controller. Besides the various analyses such as normal condition (without CTD strategy), stability, and hybrid noise, a CTD analysis is implemented to illustrate the functionality of the system in a wireless manner and interruption in real-time feedback data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.