Optimal Pseudo-Gaussian and Rank-based Tests of the Cointegration Rank in Semiparametric Error-correction ModelsHallin, M.; Werker, B.J.M.; van den Akker, R.
Document version:Early version, also known as pre-print
General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.-Users may download and print one copy of any publication from the public portal for the purpose of private study or research -You may not further distribute the material or use it for any profit-making activity or commercial gain -You may freely distribute the URL identifying the publication in the public portal Take down policy If you believe that this document breaches copyright, please contact us providing details, and we will remove access to the work immediately and investigate your claim.
AbstractThis paper provides locally optimal pseudo-Gaussian and rank-based tests for the cointegration rank in linear cointegrated error-correction models with i.i.d. elliptical innovations. The proposed tests are asymptotically distribution-free, hence their validity does not depend on the actual distribution of the innovations. The proposed rank-based tests depend on the choice of scores, associated with a reference density that can freely be chosen. Under appropriate choices they are achieving the semiparametric efficiency bounds; when based on Gaussian scores, they moreover uniformly dominate their pseudo-Gaussian counterparts. Simulations show that the asymptotic analysis provides an accurate approximation to finite-sample behavior. The theoretical results are based on a complete picture of the asymptotic statistical structure of the model under consideration.