2007
DOI: 10.1007/s10528-007-9081-2
|View full text |Cite
|
Sign up to set email alerts
|

Adaptive Evolution of the First Extra Exon in the Murid Rodent Prolactin Gene Family

Abstract: The prolactin gene family in rodents consists of multiple members that coordinate the processes of reproduction and pregnancy. Some members of this family acquired one or two additional exons between exon 2 and exon 3 of the prototypical 5-exon, 4-intron structure, but the evolutionary importance of this insertion is unclear. Here, we focus on those members and survey this question by molecular evolutionary methods. Phylogenetic analysis shows that those members cluster into two distinct groups. Further analys… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2008
2008
2008
2008

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 40 publications
0
1
0
Order By: Relevance
“…Interestingly, members of the murine PRL/PL family have undergone further diversification by adopting splice variants. Evidence for positive selection within large families of amplified genes, particularly those associated with reproduction, has been accumulating [ 70 - 74 ]. One theory suggests that the gene duplication event itself is positively selected for to allow the amplification of genes that are somewhat pre-adapted to meet a particular environmental challenge or biochemical niche, so that divergence and acquisition of new functionality may follow [ 75 ].…”
Section: Discussionmentioning
confidence: 99%
“…Interestingly, members of the murine PRL/PL family have undergone further diversification by adopting splice variants. Evidence for positive selection within large families of amplified genes, particularly those associated with reproduction, has been accumulating [ 70 - 74 ]. One theory suggests that the gene duplication event itself is positively selected for to allow the amplification of genes that are somewhat pre-adapted to meet a particular environmental challenge or biochemical niche, so that divergence and acquisition of new functionality may follow [ 75 ].…”
Section: Discussionmentioning
confidence: 99%