In this study, we present a novel dual-loop robust trajectory tracking framework for autonomous underwater vehicles, with the objective of enhancing their performance in underwater searching tasks amidst oceanic disturbances. Initially, a real-world AUV experiment is conducted to validate the efficacy of a cross-rudder AUV configuration in maintaining sailing angle stability during the diving stage, which exhibits a strong capability for straight-line sailing. Building upon the experimental findings, we introduce a state-transform-model predictive guide law to compute the desired velocity for the dynamics loop. This guide law dynamically adjusts the controller across varying depths, thereby reducing model predictive control (MPC) computation while optimizing timing without compromising precision or convergence speed. Subsequently, we incorporate a sliding mode controller with a prescribed disturbance observer into the velocity control loop to concurrently enhance the robustness and convergence rate of the system. This innovative amalgamation of controllers significantly improves tracking precision and convergence rate, while also alleviating the computational burden—a pervasive challenge in AUV MPC control. Finally, various condition simulations are conducted to validate the robustness, effectiveness, and superiority of the proposed method. These simulations underscore the enhanced performance and reliability of our proposed trajectory tracking framework, highlighting its potential utility in real-world AUV applications.