2021
DOI: 10.1002/rnc.5744
|View full text |Cite
|
Sign up to set email alerts
|

Adaptive finite‐time super‐twisting sliding mode control for robotic manipulators with control backlash

Abstract: This article aims at the problem of trajectory tracking for industrial robotic manipulators with control backlash. An arctangent terminal sliding mode surface is developed to deal with the lumped disturbance and enhance the robustness of the system. A novel adaptive super-twisting sliding mode control method is developed to achieve fast convergence and continuous control. The chattering in control law is surmounted by using super-twisting method. The lumped disturbance with unknown upper bound is compensated w… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
5

Citation Types

0
18
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
5

Relationship

1
4

Authors

Journals

citations
Cited by 33 publications
(19 citation statements)
references
References 46 publications
0
18
0
Order By: Relevance
“…10,11 Among them, SMC attracted lots of attention for its fast transient response and robustness against disturbance. 12,13 The design of traditional sliding mode surface (SMS) could only make the tracking error converge asymptotically. In order to accelerate the convergence speed, high gain was necessary.…”
Section: Introductionmentioning
confidence: 99%
“…10,11 Among them, SMC attracted lots of attention for its fast transient response and robustness against disturbance. 12,13 The design of traditional sliding mode surface (SMS) could only make the tracking error converge asymptotically. In order to accelerate the convergence speed, high gain was necessary.…”
Section: Introductionmentioning
confidence: 99%
“…[1][2][3][4][5][6][7] In several control approaches, a linear sliding surface is employed to design a controller and this can only ensure asymptotic convergence. [8][9][10][11][12][13] To achieve finite-time convergence, terminal sliding mode (TSM) control techniques have been designed using nonlinear sliding surfaces and have been widely investigated for various nonlinear systems like power filters, 14,15 MEMS gyroscope, stochastic and strict-feedback nonlinear systems, 16,17 robotic manipulators, [18][19][20][21][22][23][24][25] and so forth. For example, the authors in References 18,19 propose a TSM control for the trajectory tracking problem of robotic manipulators with a super-twisting method.…”
Section: Introductionmentioning
confidence: 99%
“…1. Different from TSM [14][15][16][17][18][19][20][21][22][23][24][25] and fixed-time sliding mode [1][2][3][4][5][6][7][8][9][10][11][12][13][14]26,27 tracking controls, the state trajectories are constrained to the sliding surface from the very beginning of system response and thus the reaching phase is totally eliminated and the global robustness is ensured;…”
Section: Introductionmentioning
confidence: 99%
See 2 more Smart Citations