1989
DOI: 10.1109/10.18751
|View full text |Cite
|
Sign up to set email alerts
|

Adaptive Fourier estimation of time-varying evoked potentials

Abstract: An estimation procedure for dealing with time-varying evoked potentials is presented here. The evoked response is modeled as a dynamic Fourier series and the Fourier coefficients are estimated adaptively by the least mean square algorithm. Approximate expressions have been developed for the estimation error and time constant of adaptation. A procedure for optimizing the estimator performance is also presented. The effectiveness of the estimator in dealing with simulated as well as actual evoked responses is de… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
38
0
1

Year Published

2001
2001
2017
2017

Publication Types

Select...
6
2
1

Relationship

0
9

Authors

Journals

citations
Cited by 146 publications
(39 citation statements)
references
References 10 publications
0
38
0
1
Order By: Relevance
“…El FLC adapta la amplitud y fase de una oscilación en su entrada y es capaz de hacer un seguimiento de sus cambios, (Vaz et al, 1994). Además, es un método de muy bajo coste computacional, ofrece intrínsecamente una salida de fase cero (Vaz and Thakor, 1989), y tiene un cero en el infinito (Riviere and Thakor, 1996).…”
Section: Filtrado Adaptativo Para La Extracción De Las Intenciones Deunclassified
“…El FLC adapta la amplitud y fase de una oscilación en su entrada y es capaz de hacer un seguimiento de sus cambios, (Vaz et al, 1994). Además, es un método de muy bajo coste computacional, ofrece intrínsecamente una salida de fase cero (Vaz and Thakor, 1989), y tiene un cero en el infinito (Riviere and Thakor, 1996).…”
Section: Filtrado Adaptativo Para La Extracción De Las Intenciones Deunclassified
“…For the sake of Q=H T W, thus W= (H T ) -1 Q is asymptotic stable solution of (12). Figure 4 shows the stability and convergence of algorithm based on SOS and FLOS.…”
Section: (T)=| T | P-2 Conj(t) (P < α ) If T Is Real Data Then G(t)mentioning
confidence: 99%
“…The EPs have a number of clinical applications including critical care, operating room monitoring and the diagnosis of a variety of neurological disorders [1,2]. The analysis of EP characteristics is of special interest in many clinical applications, such as the diagnosis of possible brain injury and disorders in the CNS [11,12]. Thus, the goal in the analysis of EPs is currently the estimation from the several potentials, or even from a single potential.…”
Section: Introductionmentioning
confidence: 99%
“…So as to introduce an ECG that gives ECG and accurate interpretation. So Many methods have been presented in the literature to provide ECG enhancement using adaptive methods [1][2][3][4][5][6][7][8][9][10][11][12][13], adaptive filtering methods help to determine time changes voltages and to track the changes of signals. In [3], Thakor et al Proposed an least mean square based adaptive filter to acquire the impulse response of normal QRS complexes and then approach it for arrhythmia detection in corrupted ECG recordings.…”
Section: Introductionmentioning
confidence: 99%