2016
DOI: 10.1016/j.eswa.2016.01.036
|View full text |Cite
|
Sign up to set email alerts
|

Adaptive fuzzy PI controller with shifted control singletons

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
5
0
2

Year Published

2017
2017
2020
2020

Publication Types

Select...
7

Relationship

1
6

Authors

Journals

citations
Cited by 15 publications
(7 citation statements)
references
References 14 publications
0
5
0
2
Order By: Relevance
“…A starting procedure of a minimum variance control system, involving successively different values of the control penalty factor, is presented in [16]. A relatively similar solution, proposing a self-tuning algorithm for controller output singletons of an adaptive fuzzy PI control system, has been implemented and the results were published by the authors in [7], noting comparably good performances. The theoretical aspects and the full calculus regarding the analytical determination of the minimum-variance control law were described in extenso in [11,12].…”
Section: The Self-tuning Algorithm Of Control Penalty Factormentioning
confidence: 99%
See 1 more Smart Citation
“…A starting procedure of a minimum variance control system, involving successively different values of the control penalty factor, is presented in [16]. A relatively similar solution, proposing a self-tuning algorithm for controller output singletons of an adaptive fuzzy PI control system, has been implemented and the results were published by the authors in [7], noting comparably good performances. The theoretical aspects and the full calculus regarding the analytical determination of the minimum-variance control law were described in extenso in [11,12].…”
Section: The Self-tuning Algorithm Of Control Penalty Factormentioning
confidence: 99%
“…The usage of adaptive control systems is suitable for the control of complex systems for which an accurate mathematical model is not available, with the system being subject to unknown parameter variations and large disturbances over time [1][2][3][4][5][6]. Furthermore, if the operating point changes under the action of external disturbances (taking into account a wide variation range of disturbances) or due to the variation of internal parameters, the usage of classical control solutions (PI, PID controllers) becomes infeasible [5,7]. In these cases, a minimum variance control system is a viable solution due to its adaptive nature, ensured by the self-tuning characteristic of the controller parameters [8][9][10].…”
Section: Introductionmentioning
confidence: 99%
“…Permintaan Batu bara (Set-Point) (kg/s) 10 [19] kedua hasil dari algoritma pengendali yang digunakan samasama mampu mencapai rentang kerja dari parameter akumulasi massa batu bara tersebut, namun kendali PI-Fuzi mampu menunjukkan hasil yang lebih efisien dan mampu mengompensasi lambatnya rise time yang dihasilkan oleh kendali PI-Fuzi daripada kendali PI (Tabel V). TABEL V. HASIL ANALISIS AKUMULASI MASSA BATU BARA Suhu keluaran batu bara menunjukkan pengaruh pada parameter kelembaban dan kehalusan batu bara.…”
Section: Pengendaliunclassified
“…Penerapan dan pengujian kendali PI-Fuzi pada beberapa sistem plant dengan basis yang berbeda-beda telah banyak dilakukan. Uji kinerja kendali PI-Fuzi banyak diterapkan pada perangkat lunak MATLAB/Simulink dengan menggunakan beberapa jenis plant yang berbeda-beda, antara lain Automatic Generation Control (AGC) [6], grid interactive inverter [7], sistem konversi energi angin [8], Motor Brushless DC (BLDC) [9], Generator Induksi [10], dan magnet permanen motor multi-sinkron [11]. Penerapan dan pengujian pengendali PI-Fuzi pada [6], [8]- [11] merupakan penelitian yang berskala simulasi, di mana hasil dari penelitian tersebut adalah pengendali PI-Fuzi mampu menunjukkan kinerja yang lebih baik dari pengendali PI yang juga ikut diujikan pada beberapa sistem plant tersebut [6], [8]- [11].…”
unclassified
“…Multiple attribute group decision making (MAGDM) is an important and hot topic in modern decision fields. Since Zadeh (1965) proposed the fuzzy set (FS) theory, researches on FS have made a large number of achievements in many fields, including intelligent fuzzy control (Filip & Szeidert, 2016;Mendel & Wu, 2010), decision support system Gong, Zhang, Forrest, Li, & Xu, 2015;Merigó, Gil-Lafuente, & Martorell, 2012) and so on. However, one of the shortcomings of FS is that it only reflects the degree of membership, but dose not take the degree of non-membership into consideration.…”
Section: Introductionmentioning
confidence: 99%