Interspeech 2016 2016
DOI: 10.21437/interspeech.2016-321
|View full text |Cite
|
Sign up to set email alerts
|

Adaptive Group Sparsity for Non-Negative Matrix Factorization with Application to Unsupervised Source Separation

Abstract: Non-negative matrix factorization (NMF) is an appealing technique for many audio applications, such as automatic music transcription, source separation and speech enhancement. Sparsity constraints are commonly used on the NMF model to discover a small number of dominant patterns. Recently, group sparsity has been proposed for NMF based methods, in which basis vectors belonging to a same group are permitted to activate together, while activations across groups are suppressed. However, most group sparsity models… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 14 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?