Abstract:In this paper, we propose a new hybrid mesoscale eddy tracking method to enhance the eddy tracking accuracy from global satellite altimeter data. This method integrates both physical and geometric eddy properties (including the distance between eddies, the area and amplitude of eddy, and the shape of the eddy edge) via the output of detection and the calculation of Hausdorff distance, which could describe the similarity between eddy boundaries. We applied the proposed hybrid method to several previously reported eddies and compared the results with those from two traditional tracking methods. A quantitative comparison indicates that the hybrid algorithm can better reveal eddy signals in terms of their spatial scale, amplitude, lifespan, and splitting. The hybrid method was used for global mesoscale eddies tracking from 1993 to 2015. Global distributions of net eddy numbers revealed that the sources of eddies are located along the eastern boundaries of the world oceans, while the sinks of eddies are located along the western boundaries. The lifespan distribution of eddies exhibited steep growth from high and low latitudes to middle latitudes. A clear divergent pathway demonstrates that cyclonic/anticyclonic eddies tend to travel poleward/equatorward in the world oceans.