2024
DOI: 10.3390/app14156828
|View full text |Cite
|
Sign up to set email alerts
|

Adaptive Imputation of Irregular Truncated Signals with Machine Learning

Tyler Ward,
Kouroush Jenab,
Jorge Ortega-Moody

Abstract: In modern advanced manufacturing systems, the use of smart sensors and other Internet of Things (IoT) technology to provide real-time feedback to operators about the condition of various machinery or other equipment is prevalent. A notable issue in such IoT-based advanced manufacturing systems is the problem of connectivity, where a dropped Internet connection can lead to the loss of important condition data from a machine. Such gaps in the data, which we call irregular truncated signals, can lead to incorrect… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 15 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?