Sensor Fusion and Its Applications 2010
DOI: 10.5772/9957
|View full text |Cite
|
Sign up to set email alerts
|

Adaptive Kalman Filter for Navigation Sensor Fusion

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
10
0
3

Year Published

2014
2014
2020
2020

Publication Types

Select...
4
3
1

Relationship

0
8

Authors

Journals

citations
Cited by 20 publications
(13 citation statements)
references
References 22 publications
0
10
0
3
Order By: Relevance
“…UGKF yöntemi, kestirilen durum vektörünün varyansının artırılmasına yönelik olarak kestirim hatasının kovaryans matrisine ölçekleme faktörü 'nın dahil edilmesiyle geleneksel GKF yönteminden farklılaşmaktadır [29]. UGKF yöntemine ait eşitlikler aşağıdaki gibi verilmiştir [26].…”
Section: Tam Dereceli Uyarlamalı Genişletilmiş Kalman Filtresi Algoriunclassified
“…UGKF yöntemi, kestirilen durum vektörünün varyansının artırılmasına yönelik olarak kestirim hatasının kovaryans matrisine ölçekleme faktörü 'nın dahil edilmesiyle geleneksel GKF yönteminden farklılaşmaktadır [29]. UGKF yöntemine ait eşitlikler aşağıdaki gibi verilmiştir [26].…”
Section: Tam Dereceli Uyarlamalı Genişletilmiş Kalman Filtresi Algoriunclassified
“…(16) should be equal. So the ratio of the actual innovation covariance based on the sampled sequence to the theoretical innovation covariance will be employed for dynamically tuning filter parameters [6], as Eq. 11shows.…”
Section: Dual-frequency Tuning Strategymentioning
confidence: 99%
“…The innovation-based covariance matching technique is a popular method. It calculates the covariance estimation with limited sample in a window and attempts to make the filter theoretical covariance consistent with it [5,6].…”
Section: Introductionmentioning
confidence: 99%
“…Using the innovation-based covariance matching ideas discussed in Chapter 1, the proposed fuzzy adaptive update laws are based on the discrepancies between the actual observed Ąlter covariance and the theoretical covariance bounds suggested by the Ąlter. The Ąrst performance metric selected for adapting the EKF has been demonstrated by several other authors [59,60,118], and is coined the Degree of Mismatch (DOM). The DOM matrix η DOM ∈ R m×m is simply the element-by-element difference between the theoretical covariance of the residuals Σ k ∈ R m×m calculated within the EKF, and the experimental covariance of the residuals sampled from the Ąlter outputΣ k♣N ∈ R m×m , which have previously been presented in Eqs.…”
Section: Criteria For Innovation-based Covariance Matchingmentioning
confidence: 99%
“…Another parameter constructed to detect sub-optimal performance of the Ąlter is the Degree of Divergence (DOD) [118,119], which will be denoted by η DOD ∈ R. Evaluating the trace of the residual covariance matrix gives a scalar value ξ ∈ R that can be used to indicate overall divergence of the Ąlter, or outliers within the data. These traces can be identiĄed for both the theoretical RCM and the observed RCM, as denoted by ξ andξ, respectively:…”
Section: Criteria For Innovation-based Covariance Matchingmentioning
confidence: 99%