2023
DOI: 10.3390/math11132808
|View full text |Cite
|
Sign up to set email alerts
|

Adaptive L0 Regularization for Sparse Support Vector Regression

Abstract: In this work, we proposed a sparse version of the Support Vector Regression (SVR) algorithm that uses regularization to achieve sparsity in function estimation. To achieve this, we used an adaptive L0 penalty that has a ridge structure and, therefore, does not introduce additional computational complexity to the algorithm. In addition to this, we used an alternative approach based on a similar proposal in the Support Vector Machine (SVM) literature. Through numerical studies, we demonstrated the effectiveness … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 14 publications
0
0
0
Order By: Relevance