2011
DOI: 10.1016/j.cviu.2010.08.003
|View full text |Cite
|
Sign up to set email alerts
|

Adaptive learning of multi-subspace for foreground detection under illumination changes

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
15
0
3

Year Published

2012
2012
2019
2019

Publication Types

Select...
4
3
1

Relationship

0
8

Authors

Journals

citations
Cited by 33 publications
(18 citation statements)
references
References 15 publications
0
15
0
3
Order By: Relevance
“…Durante la etapa de acondicionamiento de la imagen, se deben analizar los efectos generadores de degradación a fin de implementar medidas para reducir su impacto, entre los fenómenos causantes de la degradación es posible encontrar [1, 13,[17][18][24][25][26][27][28]:…”
Section: A Imágenes Digitalesunclassified
See 2 more Smart Citations
“…Durante la etapa de acondicionamiento de la imagen, se deben analizar los efectos generadores de degradación a fin de implementar medidas para reducir su impacto, entre los fenómenos causantes de la degradación es posible encontrar [1, 13,[17][18][24][25][26][27][28]:…”
Section: A Imágenes Digitalesunclassified
“…En las aplicaciones relacionadas con el seguimiento de personas (u objetos), la detección del movimiento se fundamenta en la substracción de la información del fondo y la captura de las variables temporales [1,[4][5][6][7][9][10][11][12][13]20,22,26].…”
Section: B Iluminaciónunclassified
See 1 more Smart Citation
“…Moreover, we select models adaptive to fast lighting change (e.g. ALPCA [7], TGMM [2], HGMM [3] and MGMM [4]) with the optimal parameters selected to do comparative experiments. The experiments were run on a 2.2GB Intel 2-core machine with MatlabV7.1.…”
mentioning
confidence: 99%
“…First, since we are only interested in feature points on the actual object, the background must be subtracted from the foreground using the algorithm presented in [4]. After that, the framework finds matching points between all pairs of stereo images using the SIFT algorithm [3], [11] implemented as a Matlab toolbox [6].…”
Section: ) Determining Correspondences In the Image Domainmentioning
confidence: 99%