2007
DOI: 10.1016/j.anucene.2006.07.012
|View full text |Cite
|
Sign up to set email alerts
|

Adaptive matrix formation (AMF) method of space–time multigroup reactor kinetics equations in multidimensional model

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
3
0
1

Year Published

2012
2012
2023
2023

Publication Types

Select...
5
2

Relationship

0
7

Authors

Journals

citations
Cited by 31 publications
(4 citation statements)
references
References 17 publications
0
3
0
1
Order By: Relevance
“…The neutron flux was considered zero at the outer boundaries of the reactor. Table 2 shows the results of the K eff calculation for the homogeneous reactor using the FDMs algorithm for 20 (10 Â 10 Â 10), 10 (20 Â 20 Â 20), and 5 (40 Â 40 Â 40 cells) cm-mesh size (spatial integration step: Ds) in all directions along with the results of LAPe and LAPc (using a 6th degree Lagrange interpolation polynomial, see Appendix A) and the results of Aboanber and Nahla, 2007 (AMF) referenced in Nahla et al, 2012b. Notice that the FDMs and LAP results approach a reference value of K eff_H = 0.8930488 calculated with the equation of the bare homogeneous reactors published in Duderstadt and Hamilton (1976).…”
Section: Steady State Calculationsmentioning
confidence: 99%
“…The neutron flux was considered zero at the outer boundaries of the reactor. Table 2 shows the results of the K eff calculation for the homogeneous reactor using the FDMs algorithm for 20 (10 Â 10 Â 10), 10 (20 Â 20 Â 20), and 5 (40 Â 40 Â 40 cells) cm-mesh size (spatial integration step: Ds) in all directions along with the results of LAPe and LAPc (using a 6th degree Lagrange interpolation polynomial, see Appendix A) and the results of Aboanber and Nahla, 2007 (AMF) referenced in Nahla et al, 2012b. Notice that the FDMs and LAP results approach a reference value of K eff_H = 0.8930488 calculated with the equation of the bare homogeneous reactors published in Duderstadt and Hamilton (1976).…”
Section: Steady State Calculationsmentioning
confidence: 99%
“…Çok hassas hesaplamalarda, grup sayısı çok fazladır. Nötron difüzyon denklemlerinin çözümü için genelleştirilmiş Pade ve kesikli çarpım yaklaşımı [5], adaptif matris formasyon metodu [6] , ilerleyici polinom yaklaşımı [7] ve sınır elemanı-tepki matrisi metodu [8] gibi değişik teknikler geliştirilmiştir. Bu çalışmada, nötronları oda sıcaklığında olanlar ve onun üstünde kalan enerjiye sahip geri kalanların tamamı olmak üzere iki farklı gruba ayırarak, verilen bir reaktör kompozisyonu için kritik reaktör boyutlarını iki gruplu nötron difüzyon denklemini numerik olarak çözerek tespit ettik.…”
unclassified
“…Calculations of these parameters are concerned with the reactor dynamics. The neutron density is one of the most important parameters in reactor dynamics [5][6][7]. According to the importance of neutron density in the cold start-up stage, the external neutron source makes a significant contribution to the reactor power [8].…”
Section: Introductionmentioning
confidence: 99%
“…Therefore, one should carefully study the influence of external neutron source on the reactor power [10,11]. So far, appropriate mathematical models have already been developed to study the sub-critical kinetics, such as including the constant external neutron source [6], approximation models [12][13][14] and prompt jump approximation (PJA) [9,15,16].…”
Section: Introductionmentioning
confidence: 99%