2017 17th International Conference on Control, Automation and Systems (ICCAS) 2017
DOI: 10.23919/iccas.2017.8204356
|View full text |Cite
|
Sign up to set email alerts
|

Adaptive motion planning in bin-picking with object uncertainties

Abstract: Doing motion planning for bin-picking with object uncertainties requires either a re-grasp of picked objects or an online sensor system. Using the latter is advantageous in terms of computational time, as no time is wasted doing an extra pick and place action. It does, however, put extra requirements on the motion planner, as the target position may change on-the-fly. This paper solves that problem by using a state adjusting Partial Observable Markov Decision Process, where the state space is modified between … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 10 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?