2023
DOI: 10.3390/electronics12132852
|View full text |Cite
|
Sign up to set email alerts
|

Adaptive Multi-Scale Difference Graph Convolution Network for Skeleton-Based Action Recognition

Abstract: Graph convolutional networks (GCNs) have obtained remarkable performance in skeleton-based action recognition. However, previous approaches fail to capture the implicit correlations between joints and handle actions across varying time intervals. To address these problems, we propose an adaptive multi-scale difference graph convolution Network (AMD-GCN), which comprises an adaptive spatial graph convolution module (ASGC) and a multi-scale temporal difference convolution module (MTDC). The first module is capab… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 73 publications
0
0
0
Order By: Relevance