2023
DOI: 10.1002/asjc.3116
|View full text |Cite
|
Sign up to set email alerts
|

Adaptive neural control with fast approximation for uncertain nonlinear systems: A novel composite learning approach

Abstract: In existing adaptive neural control approaches, only when the regressor satisfies the persistent excitation (PE) or interval excitation (IE) conditions, the constant optimal weights of neural network (NN) can be identified, which can be used to establish uncertainties in nonlinear systems. This paper proposes a novel composite learning approach based on adaptive neural control. The focus of this approach is to make the NN approximate uncertainties in nonlinear systems quickly and accurately without identifying… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1
1

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 36 publications
0
0
0
Order By: Relevance