A finite-time adaptive neural network position tracking control method is considered for the fractional-order chaotic permanent magnet synchronous motor (PMSM) via command filtered backstepping in this paper. Firstly, a neural network with a fractional-order parametric update law is utilized to cope with the nonlinear and unknown functions. Then the command filtered technique is introduced to address the repeated derivative problem in backstepping. In addition, a novel finite-time control method is proposed by employing the fractional-order terminal sliding manifolds, designing the error compensation mechanism and the new virtual control laws. The finite-time convergence of the tracking error can be guaranteed by the proposed controller. Finally, the designed control method is verified by simulation results.
IntroductionFractional calculus is an evolving theory in many relevant sciences which is opening new areas in mathematics. It is a generalization of conventional differentiation and integration to arbitrary order [1]. Due to its potential applications and interesting properties, the fractional calculus has captured considerable attention from scholars in many fields [2][3][4][5]. Currently, many interesting results associated with the fractional calculus have been given [6][7][8]. The research shows that the fractional-order controllers are more advantageous than that of traditional integer-order ones. And also, some meaningful results have been reported on the stability problems in the scope of fractional calculus. For instance, by utilizing the fractional-order Lyapunov stability criterion, the robust consensus tracking problem is investigated in [9] for fractional-order multiagent systems with external disturbances and heterogeneous unknown nonlinearities. Based on the Chebyshev neural network (NN) technique, an adaptive synchronization approach is proposed in [10] for a class of fractional-order micro-electro-mechanical systems with chaotic oscillation. Therefore, the research of fractional-order system is a meaningful work.