The internet of things (IoT) paradigm roles an important play in enhancing smart city tracking applications and managing city procedures in real time. The most important problem connected to smart city applications has been solid waste management, which can have adverse effects on society’s health and environment. Waste management has developed a challenge faced by not only evolving nations but also established and developed counties. Solid waste management is an important and stimulating problem for environments across the entire world. Therefore, there is the need to develop an effective technique that will remove these problems, or at least decreases them to a minimal level. This study develops a modified cuttlefish swarm optimization with machine learning-based solid waste management (MCSOML-SWM) in smart cities. The MCSOML-SWM technique aims to recognize different categories of solid wastes and enable smart waste management. In the MCSOML-SWM model, a single shot detector (SSD) model allows effectual recognition of objects. Then, a deep convolutional neural network-based MixNet model was exploited to produce feature vectors. Since trial-and-error hyperparameter tuning is a tedious process, the MCSO algorithm was applied for automated hyperparameter tuning. For accurate waste classification, the MCSOML-SWM technique applies support vector machine (SVM) in this study. A comprehensive set of simulations demonstrate the improved classification performance of the MCSOML-SWM model with maximum accuracy of 99.34%.