Low-dose CT images result in lower image reconstruction quality due to reduced radiation dose, producing noise and artifacts that affect the accuracy of clinical medical diagnosis. To address this problem, we combined 2D variational modal decomposition and dictionary learning. We proposed a low-dose CT (LDCT) image denoising algorithm based on an improved K-SVD algorithm with image decomposition. The traditional K-SVD algorithm lacks consideration for the differences in structural information between images. To address this problem, we employ the two-dimensional variational mode decomposition (2D-VMD) method to decompose the image into distinct modal components. Through the adaptive learning of dictionaries based on the characteristics of each modal component, independent denoising processing is applied to each component, avoiding the loss of structural and detailed information in the image. In addition, we introduce the regularized orthogonal matching pursuit algorithm (ROMP) and dictionary atom optimization method to improve the sparse representation ability of the dictionary and reduce the impact of noise atoms on denoising performance. The experiments show that the proposed method outperforms other denoising methods regarding peak signal-to-noise ratio and structural similarity. The proposed method maintains the denoised image details and structural information while removing LDCT image noise and artifacts. The image quality after denoising is significantly improved and facilitates more accurate detection and analysis of lesion areas.