Having accurate values of the dynamic parameters is necessary to characterize the dynamic behaviors of mechanical systems and for the prediction of their responses. To accurately describe the dynamic characteristics of industrial robots (IRs), a new method for dynamic parameter identification is proposed in this study with the goal of developing a real IR dynamics model that combines the multibody system transfer matrix method (MSTMM) and the nondominated sorting genetic algorithm‐II (NSGA‐II). First, the multibody dynamics model of an IR is developed using the MSTMM, by which its frequency response function (FRF) is calculated numerically. Then, the experimental modal analysis is conducted to measure the IR's actual FRF. Finally, the objective function of the minimum errors between the calculated and measured eigenfrequencies and FRFs are constructed to identify the dynamic parameters of the IR by the NSGA‐II algorithm. The simulated and experimental results illustrate the effectiveness of the methodology presented in this paper, which provides an alternative to the identification of IR dynamic parameters.