The integrated 6-DOF orbit-attitude dynamical modeling and control have shown great importance in various missions, for example, formation flying and proximity operations. The integrated approach yields better performances than the separate one in terms of accuracy, efficiency, and agility. One challenge in the integrated approach is to find a unified representation for the 6-DOF motion with configuration space SE(3). Recently, exponential coordinates of SE(3) have been used in dynamics and control of the 6-DOF motion, however, only on the kinematical level. In this paper, we will improve the current method by adopting exponential coordinates on the dynamical level, by giving the relation between the second-order derivative of exponential coordinates and spacecraft's accelerations. In this way, the 6-DOF motion in terms of exponential coordinates can be written as a second-order system with a quite compact form, to which a broader range of control theories, such as higher-order sliding modes, can be applied. For a demonstration purpose, a simple asymptotic tracking control law with almost global convergence is designed. Finally, the integrated modeling and control are applied to the body-fixed hovering over an asteroid and verified by a simulation, in which absolute motions of the spacecraft and asteroid are simulated separately.