This paper considers the problem of power management and throughput maximization for energy neutral operation when using an energy harvesting sensor (EHS) to send data over a wireless link. The EHS is assumed to be able to harvest energy at a constant rate, and use a fixed part of the energy harvested in a slot for measuring the channel state. The rest of the energy harvested is available for transmission, however, it can be stored in an inefficient battery if it is not fully utilized. The key constraint that the EHS needs to satisfy is energy neutrality, i.e., the expected energy drawn from the battery should equal the expected energy deposited into the battery. In this scenario, two popular models for data transmission are contrasted: the constant bit rate (CBR) model and the variable bit rate (VBR) model. In the CBR model, it is assumed that the EHS are designed to transmit data at a constant rate (using a fixed modulation and coding scheme) but are power-controlled. In the VBR model, the EHS selects both the transmit power and the data rate of transmission in each slot based on the channel instantiation. A framework under which the system designer can optimize several parameters of the EHS that determine the average data rate performance when the channel is Rayleigh fading is developed. Using this framework, the two transmission schemes are contrasted. It is shown that, with the right choice of parameter settings, the CBR scheme can perform nearly as well as the VBR scheme at significantly lower complextiy. The usefulness and validity of the framework developed is illustrated through simulations for specific examples.