2017
DOI: 10.1016/j.engappai.2017.07.009
|View full text |Cite
|
Sign up to set email alerts
|

Adaptive recurrent neural network with Lyapunov stability learning rules for robot dynamic terms identification

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
17
0
2

Year Published

2019
2019
2022
2022

Publication Types

Select...
9
1

Relationship

0
10

Authors

Journals

citations
Cited by 35 publications
(19 citation statements)
references
References 41 publications
0
17
0
2
Order By: Relevance
“…Wu & Jahanshahi (2019) utiliza una red neuronal convolucional para estimar el movimiento de tres sistemas dinámicos. Por su parte, Agand et al (2017), utilizan una red neuronal recurrente para compensar el torque de un controlador PID en un helicóptero colocado en una base firme. Sus resultados de más de 100 segundos muestran que el helicóptero se estabiliza en la posición deseada.…”
Section: Trabajos Relacionadosunclassified
“…Wu & Jahanshahi (2019) utiliza una red neuronal convolucional para estimar el movimiento de tres sistemas dinámicos. Por su parte, Agand et al (2017), utilizan una red neuronal recurrente para compensar el torque de un controlador PID en un helicóptero colocado en una base firme. Sus resultados de más de 100 segundos muestran que el helicóptero se estabiliza en la posición deseada.…”
Section: Trabajos Relacionadosunclassified
“…To achieve the efficiency in the controlling mechanism of the system, the neural network should be trained in such a way that the given input of the controller should produce a proper gain signals. The descriptions of RNN along with other details are included (Agand et al, 2017). RNN has associations among the concealed neurons and it structures a coordinated cycle.…”
Section: Process For Recurrent Neural Network Trainingmentioning
confidence: 99%
“…The simulated results showed the efficiency of the proposed methodology in improving the desired tracking and disturbance decoupling performance. Agand et al [68] demonstrated, experimentally the efficiency of using an adaptive neural network based inverse dynamic control (IDC) for a helicopter system. In this work, an enhancement in the steady-state performance of two to three times compared to the conventional PID was exhibited.…”
Section: Twin-rotor Systemsmentioning
confidence: 99%