2021
DOI: 10.32920/ryerson.14643771
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Adaptive representations for improving evolvability, parameter tuning, and parallelization of gene expression programming

Abstract: Gene Expression Programming (GEP) is a genetic algorithm that evolves linear chromosomes encoding nonlinear (tree-like) structures. In the original GEP algorithm, the genome size is problem specific and is determined through trial and error. In this work, a novel method for adaptively tuning the genome size is presented. The approach introduces new mutation, transposition and recolI)bination operators that enable a population of heterogeneously structured chromosomes, something the original GEP algorithm does … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 13 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?