Cell viability requires accurate chromosome segregation during meiosis and mitosis so that the daughter cells produced have the correct chromosome complement. In contrast, chromosome segregation errors lead to aneuploidy, a state of abnormal chromosome numbers. Furthermore, a persistently high rate of chromosome segregation errors causes the related phenomenon of whole chromosomal instability (w-CIN). Aneuploidy and w-CIN are common characteristics of several human conditions and diseases including birth defects and cancers. Thus, methods to measure aneuploidy and w-CIN have important research applications in many areas of cell biology. In this chapter, we describe methods to measure chromosome missegregation rates and aneuploid cell survival with a focus on cells grown in culture; however, we also highlight methods that are amenable to primary tissue samples. Together, these methods provide a comprehensive approach to determining the frequency of aneuploidy and w-CIN in cells.