2021
DOI: 10.1016/j.isatra.2021.02.002
|View full text |Cite
|
Sign up to set email alerts
|

Adaptive RISE control for asymptotic rigid-body attitude tracking with additive disturbances

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0
1

Year Published

2021
2021
2025
2025

Publication Types

Select...
7

Relationship

0
7

Authors

Journals

citations
Cited by 8 publications
(3 citation statements)
references
References 41 publications
0
2
0
1
Order By: Relevance
“…where i = 1, 2, 3. Based on the condition (9), it is concluded that if |q i (0)| < ρ q0 and |ω i (0)| < ρ ω0 hold, the attitude quaternion and rotation velocity always remain in the predefined bounds. Applying the PPC concept [32]- [36], [41], two transformed variables for the quaternion and angular velocity should be adopted to transform the original nonlinear attitude system (5), into an equivalent unconstrained one.…”
Section: B Prescribed Performance Controlmentioning
confidence: 99%
See 1 more Smart Citation
“…where i = 1, 2, 3. Based on the condition (9), it is concluded that if |q i (0)| < ρ q0 and |ω i (0)| < ρ ω0 hold, the attitude quaternion and rotation velocity always remain in the predefined bounds. Applying the PPC concept [32]- [36], [41], two transformed variables for the quaternion and angular velocity should be adopted to transform the original nonlinear attitude system (5), into an equivalent unconstrained one.…”
Section: B Prescribed Performance Controlmentioning
confidence: 99%
“…Therefore, it has attracted attention of researchers and numerous control strategies have been developed to obtain desirable attitude performance. For instance, backstepping method [5], variable structure control [6], event-triggered control [7], model predictive control (MPC) [8], adaptive control [9], H ∞ control [10], fuzzy control [11], output feedback control [12] and disturbance observer-based control [13] were presented to develop attitude control for rigid bodies. Although the attitude control…”
Section: Introductionmentioning
confidence: 99%
“…在 X-33 飞行器的姿态控制器设计中采用了双环滑模控制技术,先将系统分为姿态和姿态角速度两 个内外环回路,并分别设计了相对应的滑模控制器。文献 [21] 针对高超声速飞行器模型给出了基 于滑模观测的滑模控制器,是经典的不确定处理方式。文献 [22] 结合有限时间观测器来估计不确定 性和干扰,设计了自适应螺旋滑模姿态控制器,文献 [23] 加入扩张状态观测器进行不确定估计,并 在控制器设计中引入标称项和补偿项。误差鲁棒积分技术 (robust integral of the sign of the error, RISE) [24,25] 依赖于模型结构,模型结构由高增益比例项、积分状态反馈和积分符号误差项组成, 不仅可以消除扰动的影响 [26],也避免了相对于系统状态的高阶导数。 以神经网络和模糊系统为代表的智能技术,具有将光滑非线性函数拟合为线性形式的"通用逼 近"能力 [27,28] ,近年来被广泛用于处理不确定性。模糊逻辑系统 (fuzzy logic system, FLS) 针对 模型中动力学不确定函数建立模糊集,并前馈模糊估计值用于控制律设计,保证了状态的收敛性能 [29] 。文献 [30,31] 基于径向基函数等神经网络技术设计了高超声速飞行器的智能自适应控制器,文 献 [32] 则将不确定学习思路引入导弹的制导控制一体化设计中。大多数的智能学习控制技术是基于 Lyapunov 稳定性为评价指标来更新学习系统,但这将导致仅仅只有跟踪误差被引入智能学习系统 中。当系统实现外部跟踪控制目标后,跟踪误差收敛而智能学习系统不再更新,而实际上此时并不 能保证智能系统学习到了动力学不确定性,这就违背了智能学习控制的设计初衷。为了使智能学习 系统获得最优不确定知识,需要引入学习性能评价指标,但不确定函数本身的未知性使得获取学习 评价成为智能学习控制的一大难点。解决此问题存在多种思路,第一种思路是建立状态动力学模型 的平行估计模型 [33] ,通过估计状态与实际状态的差异来间接表征学习优劣。第二种思路是采集系统 状态的历史数据,基于区间激励原理利用数理统计技术 [34,35] 中国科学 : 信息科学 作为智能学习的评价指标。第三种思路通过系统输入滤波的预测信息与当前输入的差异来构建学习 误差 [36] 。而上述三类方式所构造的学习评价指标,都将作为反馈信息被引入智能学习更新律中,结 合跟踪误差构成内外复合学习控制器 [37]…”
unclassified