Interferometric phase (InPhase) imaging is an important part of many present-day coherent imaging technologies. Often in such imaging techniques, the acquired images, known as interferograms, suffer from two major degradations: 1) phase wrapping caused by the fact that the sensing mechanism can only measure sinusoidal 2π-periodic functions of the actual phase, and 2) noise introduced by the acquisition process or the system. This work focusses on InPhase denoising which is a fundamental restoration step to many posterior applications of InPhase, namely to phase unwrapping. The presence of sharp fringes that arises from phase wrapping makes InPhase denoising a hard-inverse problem. Motivated by the fact that the InPhase images are often locally sparse in Fourier domain, we propose a multi-resolution windowed Fourier filtering (WFF) analysis that fuses WFF estimates with different resolutions, thus overcoming the WFF fixed resolution limitation. The proposed fusion relies on an unbiased estimate of the mean square error derived using the Stein's lemma adapted to complex-valued signals. This estimate, known as SURE, is minimized using an optimization framework to obtain the fusion weights. Strong experimental evidence, using synthetic and real (InSAR & MRI) data, that the developed algorithm, termed as SURE-fuse WFF, outperforms the best hand-tuned fixed resolution WFF as well as other state-of-the-art InPhase denoising algorithms, is provided.