Oxygenic photosynthesis evolved at least 2.4 Ga; all oxygenic organisms use the ribulose bisphosphate carboxylase-oxygenase (Rubisco) -photosynthetic carbon reduction cycle (PCRC) rather than one of the five other known pathways of autotrophic CO 2 assimilation. The high CO 2 and (initially) O 2 -free conditions permitted the use of a Rubisco with a high maximum specific reaction rate. As CO 2 decreased and O 2 increased, Rubisco oxygenase activity increased and 2-phosphoglycolate was produced, with the evolution of pathways recycling this inhibitory product to sugar phosphates. Changed atmospheric composition also selected for Rubiscos with higher CO 2 affinity and CO 2 /O 2 selectivity correlated with decreased CO 2 -saturated catalytic capacity and/or for CO 2 -concentrating mechanisms (CCMs). These changes increase the energy, nitrogen, phosphorus, iron, zinc and manganese cost of producing and operating Rubisco -PCRC, while biosphere oxygenation decreased the availability of nitrogen, phosphorus and iron. The majority of algae today have CCMs; the timing of their origins is unclear. If CCMs evolved in a low-CO 2 episode followed by one or more lengthy high-CO 2 episodes, CCM retention could involve a combination of environmental factors known to favour CCM retention in extant organisms that also occur in a warmer high-CO 2 ocean. More investigations, including studies of genetic adaptation, are needed.