Adaptive sliding mode control of robotic manipulator based on reinforcement learning
Ziwu Ren,
Jie Chen,
Yunxi Miao
et al.
Abstract:Robotic manipulators usually exhibit time‐varying, nonlinear, and coupled dynamics due to the parameter perturbations, disturbances, and other uncertainties. Traditional control algorithms typically do not possess parameters' self‐adaptive learning ability, limiting the tracking performance of the robot. In order to address these issues, an adaptive sliding mode control method based on reinforcement learning (ASMRL) is proposed in this paper, where a proportional–integral sliding mode (PISM) controller is used… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.