Robot manipulators as an indispensable part of automatic operation are becoming increasingly important in intelligent manufacturing systems, such as grinding and assembly. Although control methods of robot manipulators have been extensively studied, high-precision robots still face new challenges from uncertainties caused by changes in the environment and enhancement of interference. As a consequence, the neural network-based observer is utilized to reduce the influence of uncertainties and external disturbances. In this work, a new kind of nonlinear disturbance observer is designed which could well function with observed states. To improve the control efficiency and response characteristic, a kind of new integral sliding manifold is devised and the control input is generated via backstepping techniques. The stability is proved with Lyapunov theory, and the experimental results are given to demonstrate the effectiveness of the proposed controller.