Abstract-Sparse Matrix-Vector multiplication (SpMV) is a key kernel for many applications in computational science and data analytics. Several efforts have addressed the optimization of SpMV on GPUs, and a number of compact sparse-matrix representations have been considered for it. It has been observed that the sparsity pattern of non-zero elements in a sparse matrix has a significant impact on achieving SpMV performance. Further, no single sparse-matrix format is consistently the best across the range of sparse matrices encountered in practice. In this paper, we perform a comprehensive study that explores the use of Machine Learning to answer two questions: 1) Given an unseen sparse matrix, can we effectively predict the best format for SpMV on GPUs? 2) Can SpMV execution time for that matrix be predicted, for different matrix formats?By identifying a small set of sparse matrix features to use in training the ML models, we demonstrate that efficient prediction of the best format with ≈ 88% accuracy can be achieved when selecting between six well known sparsematrix formats on two GPU architectures (NVIDIA Pascal and Kepler), and ≈ 10% relative mean error (RME) with execution time prediction.