Abstract-Ultra-wideband (UWB) is a fast emerging technology that has attracted considerable interest in short range, high data rate wireless personal area networks (WPAN) applications. One of the main candidates for WPAN standardization is the multiband orthogonal frequency division multiplexing (MB-OFDM), supported by the Multiband OFDM Alliance (MBOA). In this paper, we propose a new lowcomplexity resource allocation algorithm applied to a spread spectrum multicarrier multiple-access (SS-MC-MA) waveform, which is new for high data rate UWB applications. The proposed scheme aims at maximizing the system's throughput while taking into consideration the WPAN environment and respecting the OFDM parameters of the MBOA solution. The adaptive allocation algorithm applied to OFDM and SS-MC-MA leads to roughly double the throughput compared to the MBOA solution at low attenuation levels. Furthermore, at high attenuation levels, SS-MC-MA outperforms the adaptive OFDM. Hence, we conclude that the proposed adaptive SS-MC-MA can especially be advantageously exploited for high attenuation UWB applications.Index Terms-Information theory, multicarrier codedivision multiple-access (MC-CDMA), resource allocation, spread spectrum, ultra-wideband technology, wireless communications.