Abstract:In distributed machine learning training, bulk synchronous parallel (BSP) and asynchronous parallel (ASP) are two main synchronization methods to help achieve gradient aggregation. However, BSP needs longer training time due to “stragglers” problem, while ASP sacrifices the accuracy due to “gradient staleness” problem. In this article, we propose a distributed training paradigm on parameter server framework called adaptive synchronous strategy (A2S) which improves the BSP and ASP paradigms by adaptively adopti… Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.