A pounding tuned mass damper (PTMD) is introduced by making use of the energy dissipated during impact. In the proposed PTMD, a viscoelastic layer is attached to an impact limitation collar so that energy can be further consumed and transferred to heat energy. An improved numerical model to simulate pounding force is proposed and verified through experimentation. The accuracy of the proposed model was validated against a traditional Hertz-based pounding model. A comparison showed that the improved model tends to have a better prediction of the peak pounding force. A simulation was then carried out by taking the benchmark Canton Tower, which is a super-tall structure, as the host structure. The dynamic responses of uncontrolled, TMD-controlled and PTMD controlled system were simulated under wind and earthquake excitations. Unlike traditional TMDs, which are sensitive to input excitations and the mass ratio, the proposed PTMD maintains a stable level of control efficiency when the structure is excited by different earthquake records and different intensities. Particularly, more improvement can be observed when an extreme earthquake is considered. The proposed PTMD was able to achieve similar, or even better, control effectiveness with a lower mass ratio. These results demonstrate the superior adaptability of the PTMD and its applicability for protection of a building against seismic activity. A parametric study was then performed to investigate the influence of the mass ratio and the gap value on the control efficiency. A comparison of results show that better control results will be guaranteed by optimization of the gap value.