This work is devoted to the formulation of innovative SCADA-based methods for wind turbine performance analysis and interpretation. The work is organized as an academia–industry collaboration: three test cases are analyzed, two with hydraulic pitch control (Vestas V90 and V100) and one with electric pitch control (Senvion MM92). The investigation is based on the method of bins, on a polynomial regression applied to operation curves that have never been analyzed in detail in the literature before, and on correlation and causality analysis. A key point is the analysis of measurement channels related to the blade pitch control and to the rotor: pitch manifold pressure, pitch piston traveled distance and tower vibrations for the hydraulic pitch wind turbines, and blade pitch current for the electric pitch wind turbines. The main result of this study is that cases of noticeable under-performance are observed for the hydraulic pitch wind turbines, which are associated with pitch pressure decrease in time for one case and to suspected rotor unbalance for another case. On the other way round, the behavior of the rotational speed and blade pitch curves is homogeneous and stable for the wind turbines electrically controlled. Summarizing, the evidence collected in this work identifies the hydraulic pitch as a sensible component of the wind turbine that should be monitored cautiously because it is likely associated with performance decline with age.