Adaptively exploring the feature space of flowsheets
Johannes Höller,
Martin Bubel,
Raoul Heese
et al.
Abstract:Simulation and optimization of chemical flowsheets rely on the solution of a large number of nonlinear equations. Finding such solutions can be supported by constructing machine learning‐based surrogate models, relating features and outputs by simple, explicit functions. In order to generate training data for those surrogate models computationally efficiently, schemes to adaptively sample the feature space are mandatory. In this article, we present a novel family of utility functions to favor an adaptive, Baye… Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.