Spermatozoa interact with their immediate environment and this contact remodels the sperm surface in preparation for fertilisation. These fundamental membrane changes will be critically covered in this review with special emphasis on the very specific surface destabilisation event, capacitation. This process involves very subtle and intricate modifications of the sperm membrane including removal of suppression (decapacitation) factors and changes in the lateral organisation of the proteins and lipids of the sperm surface. Processing of sperm for assisted reproduction (storage, sex-sorting, etc.) subjects spermatozoa to numerous stressors, and it is possible that this processing overrides such delicate processes resulting in sperm instability and cell damage. To improve sperm quality, novel mechanisms must be used to stabilise the sperm surface during handling. In this review, different types of membrane stress are considered, as well as novel surface manipulation methods to improve sperm stability.