Due to travelling on railway systems; there are many gaps and problems in cross areas. Therefore; it is necessary and very important to establish intelligent crossing systems in such areas. On the other hand, it is not possible for trains to stop or brake immediately against an obstacle due to their high speed and inertia. For this reason, it is necessary to work on the safety/warning of the other main factors and necessities (pedestrians and vehicles) in level crossings. This experimental investigation is carried out by using an experimental real-time train and crossing systems. The main vibration parameters are analysed by using neural networks. First, the dynamics of the train-rail system related to level crossings are examined, and the vibrations created by the train on rails are measured at different speeds. Then three types of proposed neural networks predictors, Levenberg-Marquardt backpropagation (LMBP), scaled conjugate gradient backpropagation (SCGB) and BFGS quasi-Newton backpropagation (BFGS) are used to predict the vibration of the train-rail system. From the results, it is seen that the proposed LMBP is more suitable for analysing and predicting the vibration of the train-rail system. It is clear that the speeds of the trains approaching the level crossing can be estimated from the vibration of the trains on the rails.