Through their unique oxidative chemistry,
cytochrome P450 monooxygenases
(CYPs) catalyze the elimination of most drugs and toxins from the
human body. Protein–protein interactions play a critical role
in this process. Historically, the study of CYP–protein interactions
has focused on their electron transfer partners and allosteric mediators,
cytochrome P450 reductase and cytochrome b5. However, CYPs can bind
other proteins that also affect CYP function. Some examples include
the progesterone receptor membrane component 1, damage resistance
protein 1, human and bovine serum albumin, and intestinal fatty acid
binding protein, in addition to other CYP isoforms. Furthermore, disruption
of these interactions can lead to altered paths of metabolism and
the production of toxic metabolites. In this review, we summarize
the available evidence for CYP protein–protein interactions
from the literature and offer a discussion of the potential impact
of future studies aimed at characterizing noncanonical protein–protein
interactions with CYP enzymes.