Perovskite solar cells (PSCs) have seen a rapid increase in power conversion efficiencies (PCEs) over just a few years and are already competing against other photovoltaic (PV) technologies. The PCE of hybrid PSCs exhibiting distinct properties has increased from 3.8% in 2009 to ≈30% in 2023, making it a strong contender for the next generation of PV devices. However, their long-term stability is a critical issue that must be addressed before these devices can be commercialised. This review begins with a discussion of the evolution of different generations of solar cells, and the following part presents details of perovskite characteristics and prospective strategies to improve their performance. Next, the relationship of stability of PSCs with different environmental conditions, including moisture, UV light, and temperature, is discussed. Besides the development of PSC–silicon tandem solar cells, an efficient way to improve PCE is also discussed. Towards the end, we discuss a novel idea of implementing PSCs with a concentrated PV application in order to achieve higher efficiency and compete with other PV technologies by catching incident high-proton density. This review offers perspectives on the future development of emerging PSC technologies in terms of device performance enhancement and improved stability, which are central to tandem and concentrated PSC technology.