Pharmacotherapy with two antiepileptic drugs in combination is usually prescribed to epilepsy patients with refractory seizures. The choice of antiepileptic drugs in combination should be based on synergistic cooperation of the drugs with respect to suppression of seizures. The selection of synergistic interactions between antiepileptic drugs is challenging issue for physicians, especially, if 25 antiepileptic drugs are currently available and approved to treat epilepsy patients. The aim of this study was to determine all possible interactions among 5 second-generation antiepileptic drugs (gabapentin (GBP), lacosamide (LCM), levetiracetam (LEV), pregabalin (PGB) and retigabine (RTG)) in the 6-Hz corneal stimulation-induced seizure model in adult male albino Swiss mice. The anticonvulsant effects of 10 various two-drug combinations of antiepileptic drugs were evaluated with type I isobolographic analysis associated with graphical presentation of polygonogram to visualize the types of interactions. Isobolographic analysis revealed that 7 two-drug combinations of LEV+RTG, LEV+LCM, GBP+RTG, PGB+LEV, GBP+LEV, PGB+RTG, PGB+LCM were synergistic in the 6-Hz corneal stimulation-induced seizure model in mice. The additive interaction was observed for the combinations of GBP+LCM, GBP+PGB, and RTG+LCM in this seizure model in mice. The most beneficial combination, offering the highest level of synergistic suppression of seizures in mice was that of LEV+RTG, whereas the most additive combination that protected the animals from seizures was that reporting additivity for RTG +LCM. The strength of interaction for two-drug combinations can be arranged from the synergistic to the additive, as follows: LEV+RTG > LEV+LCM > GBP+RTG > PGB+LEV > GBP +LEV > PGB+RTG > PGB+LCM > GBP+LCM > GBP+PGB > RTG+LCM.