Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
In a modern world, additive manufacturing of metal products has reached significant volumes and variety of applied alloys. 3D-printing technologies make it possible to obtain parts with reduced mass, increased reliability, single products, experimental parts and elements designs with complex geometry and configuration. Disadvantages of metal parts additive manufacturing include anisotropy of chemical composition and properties, non-equilibrium structural-phase state, structural micro- and macrodefects and some other features, that require post-processing of as-printed products. Most often, heat treatment and its combination with microforging or intensive surface plastic deformation are used for this purpose. The manuscript provides an analytical review of the advantages of using ultrasonic technologies to support 3D-printing and post-processing of additively manufactured products. Special attention is paid to ultrasonic impact treatment (UIT). The equipment for providing UIT is compact, energy-saving and easy to use. It is noted, that this technology makes it possible to effectively reduce surface defects of printed parts, increase its hardness and fatigue strength. At the same time, nanostructuring and changes in the structural and phase state of the modified layers are also occured. It is also noted, that UIT may provide surface strengthening to a depth of ~500 μm, saturating it with alloying elements and compounds, and for conventionally produced parts, like as–cast, deformed and powder sintered – it is significantly more effective than most other similar methods. The prospects of using ultrasonic technologies to improve quality and level of operational and mechanical characteristics of additively manufactured metal parts, including the needs of aircraft construction, are outlined. Keywords: additive technologies, 3D-printing, ultrasonic impact treatment, UIT, surface strengthening, cavitation, vibration polishing, fatigue strength, Grade5, AlSi10Mg, Inconel-718.
In a modern world, additive manufacturing of metal products has reached significant volumes and variety of applied alloys. 3D-printing technologies make it possible to obtain parts with reduced mass, increased reliability, single products, experimental parts and elements designs with complex geometry and configuration. Disadvantages of metal parts additive manufacturing include anisotropy of chemical composition and properties, non-equilibrium structural-phase state, structural micro- and macrodefects and some other features, that require post-processing of as-printed products. Most often, heat treatment and its combination with microforging or intensive surface plastic deformation are used for this purpose. The manuscript provides an analytical review of the advantages of using ultrasonic technologies to support 3D-printing and post-processing of additively manufactured products. Special attention is paid to ultrasonic impact treatment (UIT). The equipment for providing UIT is compact, energy-saving and easy to use. It is noted, that this technology makes it possible to effectively reduce surface defects of printed parts, increase its hardness and fatigue strength. At the same time, nanostructuring and changes in the structural and phase state of the modified layers are also occured. It is also noted, that UIT may provide surface strengthening to a depth of ~500 μm, saturating it with alloying elements and compounds, and for conventionally produced parts, like as–cast, deformed and powder sintered – it is significantly more effective than most other similar methods. The prospects of using ultrasonic technologies to improve quality and level of operational and mechanical characteristics of additively manufactured metal parts, including the needs of aircraft construction, are outlined. Keywords: additive technologies, 3D-printing, ultrasonic impact treatment, UIT, surface strengthening, cavitation, vibration polishing, fatigue strength, Grade5, AlSi10Mg, Inconel-718.
In recent years, metal additive manufacturing (AM), also known as 3D printing, is grown massively in the industry. The ability of AM to build parts directly from the digital representation makes it an excellent alternative compared to traditional manufacturing technologies, such as milling, welding, casting, rolling, stamping, forging and turning for rapidly making highly customized parts. Currently, a number of different powder- and wire-based AM technologies are developed for 3D printing of metals. A number of potential benefits of AM are noted, including the allowance of design freedom, complex parts’ production, the material waste and part weight reductions, material use minimization; it also saves the time and money of the production cycle times. Due to the feasibility of the economically producing large-scale metal components with relatively high deposition rate, low machinery cost, high material efficiency, and shortened lead time as compared to the powder-based AM, the wire-based AM significantly attracted in the industry and academia due to its ability to produce the large components of the medium geometric complexity. During this AM process, the wire is fed by the controlled rate into the melt pool produced by the electric arc, laser or electron beam as the heat source. In the past few decades, the basic research and development efforts are devoted to the wire-based 3D printing parts made of Ti–6Al–4V alloy, which has been widely investigated and used in different fields such as aerospace, automotive, energy, marine industries and in addition to the prosthetics and the orthopaedic implants. Numerous studies in recent years on the influence of the 3D printing parameters have shown a significant difference in the mechanism and kinetics of the microstructure formation in the Ti–6Al–4V alloy samples compared to traditional technologies. It is well investigated that the mechanical properties of such alloy are dependent on the solidification macro- and microstructure, which is controlled by the thermal conditions during 3D printing. In the present review, the main microstructural characteristics, which determine the mechanical properties of the two-phase Ti–6Al–4V alloy, are analysed for the samples obtained by wire-feed 3D printing with various sources used for the wire melting, namely, the electric arc, the laser, and the electron beam. At first, the review introduces the links between the process parameters, resultant microstructures, especially, the morphology, the size and the quantitative ratio of the α and β grains in the as-printed Ti–6Al–4V alloy samples. However, the metallic products manufactured by a vast majority of the AM processes need to be post-processed by heat treatment and/or hot isostatic pressing, which are also discussed in this review.
Currently, the interest in the application of metal additive manufacturing (AM), also known as 3D printing, is grown massively in the various fields of the industry and surgery. AM has significant multiple advantages compared to traditional subtractive technologies for making highly customized parts with complex geometries without causing noteworthy extra costs. Now, several powder-based AM technologies for metals’ 3D printing are in progress, in particular, selective laser sintering (SLS), selective laser melting (SLM), and electron-beam melting (EBM). In the past few decades, increasing research and developments are devoted to the wire-feeding-based 3D printing production of parts made of the Ti–6Al–4V alloy, which is widely investigated in different fields such as aerospace, automotive, energy, and marine industries as well as the prosthetics and the production of orthopaedic implants. Due to the feasibility of economical producing large-scale metal components with relatively high deposition rate, low machinery cost, high material efficiency, and shortened lead-time compared to powder-based AM, wire-feeding-based AM (WFAM) is attracting significant attention in the industry and academia owing to its ability for the production of the large components of the medium geometric complexity. In recent years, three options of WFAM are intensively researched, which differ by the wire-melting heating sources: wire + arc additive manufacturing (WAAM); wire-laser AM (WLAM), and wire electron-beam additive manufacturing (WEBAM). The purpose of the present review is systematic analysis of the mechanical properties of the Ti–6Al–4V alloy samples 3D-printed by WFAM with various heating melting sources, namely, arc, laser, and electron beam. Particularly, considering the literature data for the period of 2013–2020, such important properties as yield strength, tensile strength, elongation, and hardness are analysed for the samples in the as-printed and post-processed conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.