2013
DOI: 10.48550/arxiv.1302.0443
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Additive Unit Representations in Endomorphism Rings and an Extension of a result of Dickson and Fuller

Abstract: A module is called automorphism-invariant if it is invariant under any automorphism of its injective hull. Dickson and Fuller have shown that if R is a finite-dimensional algebra over a field F with more than two elements then an indecomposable automorphism-invariant right R-module must be quasi-injective. In this note, we extend and simplify the proof of this result by showing that any automorphism-invariant module over an algebra over a field with more than two elements is quasi-injective. Our proof is based… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 7 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?