2021
DOI: 10.1186/s12880-021-00571-x
|View full text |Cite
|
Sign up to set email alerts
|

Additive value of texture analysis based on breast MRI for distinguishing between benign and malignant non-mass enhancement in premenopausal women

Abstract: Background Non-mass enhancement (NME) is a diagnostic dilemma and highly reliant on the experience of the radiologists. Texture analysis (TA) could serve as an objective method to quantify lesion characteristics. However, it remains unclear what role TA plays in a predictive model based on routine MRI characteristics. The purpose of this study was to explore the value of TA in distinguishing between benign and malignant NME in premenopausal women. Methods … Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
3
0
1

Year Published

2021
2021
2024
2024

Publication Types

Select...
7

Relationship

0
7

Authors

Journals

citations
Cited by 8 publications
(4 citation statements)
references
References 34 publications
0
3
0
1
Order By: Relevance
“…Tan ve ark. 'da [38] premenopozal kadınlarda malign-benign KDK'yi ayırt etmede doku ana-lizinin değerini araştırmak amacıyla klinik ve rutin MRG özellikleri ile doku analizini birleştiren bir model oluşturmuşlar ve kombine modelin, tek başına klinik, rutin MRG özellikleri veya doku analizi ile karşılaştırıldığında malign-benign KDK'yı ayırt etmede tanısal performansının daha üstün olduğunu bulmuşlardır (AUC: 0,887-0,832-0,74). Klinik ve rutin MRG özellikleri ile karşılaştırıldığında, model yüksek özgüllük göstermiştir (%72,5'e karşı %80).…”
Section: Kitle Dışı Kontrastlanma Ve Yapay Zeka Uygulamalarıunclassified
“…Tan ve ark. 'da [38] premenopozal kadınlarda malign-benign KDK'yi ayırt etmede doku ana-lizinin değerini araştırmak amacıyla klinik ve rutin MRG özellikleri ile doku analizini birleştiren bir model oluşturmuşlar ve kombine modelin, tek başına klinik, rutin MRG özellikleri veya doku analizi ile karşılaştırıldığında malign-benign KDK'yı ayırt etmede tanısal performansının daha üstün olduğunu bulmuşlardır (AUC: 0,887-0,832-0,74). Klinik ve rutin MRG özellikleri ile karşılaştırıldığında, model yüksek özgüllük göstermiştir (%72,5'e karşı %80).…”
Section: Kitle Dışı Kontrastlanma Ve Yapay Zeka Uygulamalarıunclassified
“…(1) Whether the use of US equipment, such as high-frequency probes (18–24 MHz), will enable morphological distinction between invasive and noninvasive cancer, and whether low blood flow display and contrast-enhanced US will increase the malignant diagnosis rate compared to MRI. (2) Distinguishing between background parenchymal enhancement and NME is difficult even for radiologists [ 68 ]. Breast MRI with CAD showed high diagnostic performance for CAD diagnosis of mass lesions, but poor performance for NME, according to a 2010 report [ 69 ].…”
Section: Landmarksmentioning
confidence: 99%
“…Breast MRI with CAD showed high diagnostic performance for CAD diagnosis of mass lesions, but poor performance for NME, according to a 2010 report [ 69 ]. Recently, by adding radiomics signatures, discriminability with sensitivity of 0.887–0.820 and specificity of 0.80–0.864 has been confirmed even for NME [ 68 , 70 ]. It is a future challenge to see how the introduction of objective and uniform criteria based on advances in image analysis technology will affect second-look indications.…”
Section: Landmarksmentioning
confidence: 99%
“…In 2020, breast cancer became the most common cancer of women worldwide ( 2 ), and the differentiation between benign and malignant breast lesions using MRI-based diagnostics was found to be critical for breast cancer treatments. However, distinguishing benign and malignant breast lesions on DCE-MRI is challenging, especially when NMEs are present ( 3 ).…”
Section: Introductionmentioning
confidence: 99%